Sombor

Gutman

P_n F_m ₩

		12							13
Sombor		Sombor							
	1 ¹⁴	(GН			V(GH)) = V (G) × V	'(H)	(u_1, v_1)
(u, 12/2)	2 ¹⁵	u ₁ â u ₂ G	v₁ৠ₂₂ E(HĴ) H	$V_1 = V_2$	u ₁ u ₂ V	E(G) $(G \times H) =$	1 = V(G) × V((H)	

1

Sombor

$= 2\sqrt{(m+1)^{2} + m^{2} + (n-2)(m-1)}\sqrt{(m+1)^{2} + 5^{2} + (2n-5)(m-1)}\sqrt{5^{2} + 5^{2}}$	
$+2(m-1)\sqrt{4^{2}+5^{2}}+2(m-1)\sqrt{4^{2}+4^{2}}+2(m-1)\sqrt{4^{2}+m^{2}}+(n-3)\sqrt{(m+1)^{2}+(m-1)^{2}}+(m-1)\sqrt{4^{2}+m^{2}}+(m-1)\sqrt{4^{2}$)

$$\begin{split} & \text{SO}(G) = \frac{1}{2} n (n^2 a + n^2 b + n^2 c - n^2 + 2na + 2nb + 2nc - 10n + a + b + c - 13) \sqrt{2} + 6n \sqrt{2n^2 + 6n + 5} \\ & v(G) = n (a + b + c - 1) \quad e(G) = \frac{1}{2} n (na + nb + nc - n + a + b + c + 1). \quad G \qquad \text{c = n + 1$} \\ & \text{$c$ = n + 2$} \qquad n(n - 1) \qquad 6n \\ & \frac{1}{2} n (na + a + nb + b + nc + c - 3n - 9) \qquad G \quad \text{Sombor} \\ & \text{SO}(G) = \frac{1}{2} n (n^2 a + n^2 b + n^2 c - n^2 + 2na + 2nb + 2nc - 10n + a + b + c - 13) \sqrt{2} + 6n \sqrt{2n^2 + 6n + 5} \\ & \text{a} \quad G = N_{a,b} \quad K_n \quad \text{Sombor} \\ & \text{SO}(G) = \frac{1}{2} n (an^2 + bn^2 + 2an + 2bn + a + b - 8n - 8) \sqrt{2} + 3n \sqrt{2n^2 + 6n + 5} + n \sqrt{2n^2 + 2n + 1} \\ & v(G) = n(a + b) \quad e(G) = \frac{1}{2} n(na + nb + a + b) \quad G \qquad c = n \qquad c = n + 2 \\ & \frac{1}{2} n(n - 1) \qquad 3n \qquad (c_a + 1) \quad \frac{1}{2} n(an + bn - 2n + a + b - 6) \\ & (c_a + 1) \quad n \qquad (c_a + 1) \quad \frac{1}{2} n(n - 1) \qquad G \quad \text{Sombor} \\ & \text{SO}(G) = \frac{1}{2} n (an^2 + bn^2 + 2an + 2bn + a + b - 8n - 8) \sqrt{2} + 3n \sqrt{2n^2 + 6n + 5} + n \sqrt{2n^2 + 2n + 1} \\ & \text{3} \quad \text{Sombor} \\ & \text{SO}(G) = \frac{1}{2} n (an^2 + bn^2 + 2an + 2bn + a + b - 8n - 8) \sqrt{2} + 3n \sqrt{2n^2 + 6n + 5} + n \sqrt{2n^2 + 2n + 1} \\ & \text{3} \quad \text{Sombor} \\ & \text{Som$$

Sombor

Sombor

$$10 \quad 1 \ SO(K_n \quad P_m) = 2n\sqrt{2n^2 + 2n + 1} + \left(\frac{1}{2}mn^3 + mn^2 + \frac{1}{2}mn - 4n^2 - 2n\right)\sqrt{2}$$

$$2 \ SO(K_n \quad C_m) = \frac{1}{2}nm(m+1)(n+1)\sqrt{2}$$

$$3 \ SO(K_n \times P_m) = (2n^3 - 4n^2 + 2n)\sqrt{5} + (2n^3m - 4n^2m - 6n^3 + 12n^2 + 2nm - 6n)\sqrt{2} \ (m > 2)$$

$$4 \ SO(K_n \times C_m) = nm(m-2)(n-1)\sqrt{2}$$

$$5 \ SO(K_n \quad P_m) = 2n^2\sqrt{13n^2 - 10n + 2} + \left(\frac{9}{2}n^3m - 3n^2m - 10n^3 + 4n^2 + \frac{1}{2}nm\right)\sqrt{2} \ (m > 2)$$

6 SO(K_n C_m) = $\frac{1}{2}$ nm(3n - 1)² $\sqrt{2}$ 7 SO($P_n \times P_m$) = $4\sqrt{17} + (8m + 8n - 48)\sqrt{5} + (8mn - 24m - 24n + 80)\sqrt{2} (mn > 2)$ $8 \text{ SO}(\text{C}_{n} \times \text{C}_{m}) = 8 \text{mn} \sqrt{2}$ 9 SO($C_n \times P_m$) = 8n $\sqrt{5}$ + (8nm - 12n) $\sqrt{2}$ (m > 2) 10 SO(P_n P_m) = $(32mn - 78m - 78n + 200)\sqrt{2} + 8\sqrt{34} + 4\sqrt{53} + (6m + 6n - 32)\sqrt{89}$ (m,n > 2) 11 SO($C_n C_m$) = 32mn $\sqrt{2}$ 12 SO(C_n P_m) = $(32mn - 78n)\sqrt{2} + 6n\sqrt{89}$ $v(K_n P_m) = mn e(K_n P_m) = \frac{1}{2}mn^2 + \frac{1}{2}mn - n K_n P_m$ 1 _{к. Р.} = n _{K-P-} = n + 1 n² - n 2n $\left(\frac{1}{2}mn^2 + \frac{1}{2}mn - n^2 - 2n\right)$ K_n P_m Sombor ⁷ G n k - G Sombor $SO(G) = \frac{nk^2}{\sqrt{2}}$ K_n C_m 2 (n + 1) - $SO(K_n C_m) = \frac{1}{2}nm(m + 1)(n + 1)\sqrt{2}$ mn $K_n \times P_m$ 10 K_n n n - 1-3 $SO(K_n \times P_m) = nk^2SO(H) = n(n - 1)^2 \left[2\sqrt{5} + 2(m - 3)\sqrt{2} \right]$ $= (2n^{3} - 4n^{2} + 2n)\sqrt{5} + (2n^{3}m - 4n^{2}m - 6n^{3} + 12n^{2} + 2nm - 6n)\sqrt{2} (m > 2)$ mn (2n - 2)- $K_n \times C_m$ $SO(K_n \times C_m) = nm(m - 2)(n - 1)\sqrt{2}$ 4 $5 v(K_n P_m) = mn e(K_n P_m) = \frac{3}{2}mn^2 - n^2 - \frac{1}{2}mn K_n P_m K_n P_m = 2n - 1$ $\left(\frac{3}{2}mn^2 - 4n^2 - \frac{1}{2}mn + n\right)$ $_{K_n P_m} = 3n - 1$ $n^2 - n$ $2n^2$ K_n P_m Sombor $K_n C_m mn (3n - 1) -$ 6 SO(K_n C_m) = $\frac{1}{2}$ nm(3n - 1)² $\sqrt{2}$ 7 $v(P_n \times P_m) = mn$ $e(P_n \times P_m) = 2(m - 1)(n - 1)$ $P_n \times P_m$ $P_n \times P_m = 1$ $P_{X} = 4$ 4 2 (4m + 4n - 24) 2 4 (2mn - 6m - 6n + 18) $P_n \times P_m$ Sombor $SO(C_n \times C_m) = nk^2SO(C_m) =$ 8 $C_n \times C_m$ C_n 2-10 $n2^2 2m\sqrt{2} = 8mn\sqrt{2}$ 10 C_n 2- $SO(C_n \times P_m) = nk^2SO(P_m) =$ 9 $C_n \times P_m$ $n2^{2}\left[2\sqrt{5} + 2(m - 3)\sqrt{2}\right] = 8n\sqrt{5} + (8nm - 12n)\sqrt{2}$ $P_n P_m = 3$ $P_n P_m = 8$ $10 v(P_n P_m) = mn e(P_n P_m) = 4mn - 3m - 3n + 2$ 8 5 (2m + 2n - 8)4 5 (6m + 6n - 32)(4mn - 11m - 11n + 30) 5 P_n P_m Sombor $SO(C_n \quad C_m) = \frac{mn8^2}{\sqrt{2}} = 32mn\sqrt{2}$ 11 $C_n C_m mn$ 8-

12 v(C_n P_m) = mn e(C_n P_m) = 4mn - 3n C_n P_m $C_{n P_m} = 5$ $C_{n P_m} = 8$ (4mn - 11n) 2n 6n C_n P_m Sombor 11 G $G = G_1 \qquad G_2 \qquad G_3 \qquad \qquad G_n$ $SO(G) > \prod_{i=1}^{n} SO(G_i)$ $G = G_1 \quad G_2 \quad G_3 \qquad G_n \qquad G_i(1 \quad i \quad n)$ $G_{1}G_{2}G_{3}$, G_{n} G $E(G_i) \qquad E(G) = E(G_1) + E(G_2) + E(G_3) + + E(G_n) \qquad G_i(1 \quad i \quad n)$ $v V(G_i)$ $v V(G) d_{G}(v) d_{G}(v) e = uv E(G_{i}) e E(G) G_{i}$ $d_{G}(u)$ G $d_{G}(u) \qquad d_{G}(u) > d_{G}(u) \qquad \sqrt{d_{G}^{2}(v) + d_{G}^{2}(u)} > \sqrt{d_{G}^{2}(v) + d_{G}^{2}(u)} \qquad E(G_{i}) \qquad E(G)$ $SO(G) > SO(G_i) \qquad E(G) = E(G_1) + E(G_2) + E(G_3) + + E(G_n) \qquad SO(G) > \sum_{i=1}^{n} SO(G_i).$ 1 G H $SO(G H) > SO(G \times H) + SO(G H)$ $G H = (G \times H) (G H) E(G H) = E()$

12	WIENER H.	Structural	Determination	of Paraffin Bo	oiling Points	J. Journ	al of the Am	erican Ch	emical Soci	ety 19	947 69	01
	17-20.											
13	BAPAT R B	GUPTA	S. Resistance	Distance in \	Wheels and	Fans J.	Indian Jour	nal of Pu	ire and Ap	plied I	Vathema	atics
	2010 41 01	1-13										

- 14 IMRICH W KLAVZAR S. Product Graphs Structure and Recognition M. Hoboken Wiley-Interscience Imprint 2000.
- Ο. 15 2011
- D. 2019. k-16
- 17 FARAHANI MR JAMIL MK KANNA MR R et al. The Wiener Index and Hosoya Polynomial of the Subdivision Graph of the Wheel S Wn and the Line Graph Subdivision Graph of the Wheel L S Wn J. Applied Mathematics 2016 6 02 21-24.

Sombor Index of Several Kinds of Product Graphs ALIMIRE Tuerhong MAITUROUZI Maisidike* LIU Zhao-zhi School of Mathematical Sciences Xinjiang Normal University Urumqi Xinjiang 830017 China

Sombor index is a new topological index based on vertex degree introduced by Gutman in Chemical Graph Theory. In this paper Sombor indices of cartesian products of path P_n with fan graph F_m and wheel graph W_m wheel graph W_n with fan graph F_m and wheel graph W_m fan graph F_n with fan graph F_m and Iollipop graph N_{ab} barbell graph D_{abc} and kite graph L_{ab} with complete graph K_n are discussed. Sombor indices of Direct products Cartesian products and Strong products of complete graph path and cycleare are also studied and the exact index values and some relations of sombor indices about product graph are obtained.

Sombor index Cartesian product Direct product Strong product

9

Bayes Estimation of the Shape Parameter of Pareto Distribution under the Gradually Increasing of Type Truncation ZHAO Meng-ru ZHOU Ju-ling* School of Mathematical Sciences Xinjiang Normal University Urumgi Xinjiang 830017 China

Based on gradually increasing type truncated samples. Firstly obtain the maximum likelihood estimation of the Pareto distribution shape parameter considering the two loss functions and the two prior distributions of shape parameters four Bayes estimation of the distribution shape parameter is concluded. It is found from the numerical simulation results that the mean square error of the four Bayes estimates is less than the maxi mum likelihood estimate. Among them when the loss function is a quadratic loss function and the prior distribution of the shape parameter is a conjugate prior distric mz J mbunprior dist and the estimation effect is more ideal and the example analysis is consistent with the numerical simulation re sults. Secondly under the quadratic loss function tion of the shape parameters

of the Pareto distribution are given.

Gradually increasing of type truncation Pareto distribution Quadratic loss Q-symmetri entropy loss Bayes estimates